PART I.
Catalog Description:

Parallel computer models, program and network properties. Principles of scalable performance, processors and memory hierarchy, cache and shared memory. Pipelining, Multi-processors and Multi-computers. SIMD and MIMD architectures.

PART II.

Major, Measurable Learning Objectives

Having successfully completed this course, the student will be able to:
– Describe computer performance metrics.
– Compare state-of-the-art computer architectures based on relevant performance metrics.
– Model and analyze interconnection network designs for parallel computer architectures.
– Analyze applications programs, formulate approaches for implementing the programs on advanced architectures, and select the most appropriate architecture to achieve a desired level of performance.

PART III. Texts and Special Teaching Aids


PART IV. Topics

– Computer architectures, taxonomies, performance models
– Principles of scalable performance
– Performance metrics
– Pipelining, vector processing, superscalar architectures
– Interconnection networks and performance comparisons
– SIMD systems: system case studies and applications
– MIMD systems: system case studies and applications
– Software support for massively parallel architectures
PART V. Tentative Grading

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Work</td>
<td>10%</td>
</tr>
<tr>
<td>Mid Term</td>
<td>20%</td>
</tr>
<tr>
<td>Essays and Presentations</td>
<td>20%</td>
</tr>
<tr>
<td>Project</td>
<td>20%</td>
</tr>
<tr>
<td>Final-Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

Part VI: Honor Code

The Alexandria University honor code will be strictly enforced.